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1. Progress of the Ph.D. Student Supported by this Grant.

Mr. Bombran Shetty, a Ph.D. student in the Industrial Engineering and

Management Sciences Department at Northwestern University was supported

(tuition and stipend) by this grant. He was unable to make significant

progress toward the solution of the problem addressed in the research pro-

posal, although he spent a great deal of time on it and worked very dili-

gently. Finally, in March 1974, he was forced to drop out of school for

personal reasons. This unfortunate series of circumstances caused con-

siderable delay in the progress of the research.

2. Sequential Decision Analysis.

The principal investigator began to work full time on the grant after

the leparture of Mr. Shetty. It was felt that in order to deelops an adap-

tive estimator for processes in which the mean and variance of the obser-

vation noise are unknown and may be changing in time, a procedure must be de-

veloped for making sequential decisions on non-stationary stochastic processes.

Current statistical decision theory deals only with time independent ran-

dom variables, and the results of optimal stochastic control theory, which

do deal with the above problem, are usually not amenable to actual algo-

rithmic implementation. Research toward development of such a procedure

produced some independently interesting results, and are contained in the

accompanying paper. These results also solve a major portion of the prob-

lem addressed in the research proposal. This paper is being submitted for

publication to the Institute of Mathematical Statistics, and will be pre-

sented at the 1975 ORSA meeting in Chicago.
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3. Continuing Work.

The principal investigator is continuing research on the problems

addressed in the research proposal for this grant. One paper on model

evaluation is currently being revised and the use of the above sequential

decision algorithm in adaptive Kalman filtering is being considered. In

the Kalman filter, the losses incurred for using an incorrect model are

well-known, and these will be used as the loss function in the decision

algorithm. Results of this research will be forwarded to NASA, as an

addendum to this final report, when they are completed.
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Abstract

A formulation of the problem of making decisions concerning the state

of non-stationary stochastic processes is given. An optimal decision rule,

for the case in which the stochastic process is independent of the decisions

made, is derived. It is shown that this rule is a generalization of the

Bayesian likelihood ratio test; and an analog to Wald's sequential likelihood

ratio test is given, in which the optimal thresholds may vary with time.

* Research supported in part by NASA Grant NGR 14-007-129.



I. Introduction

The general framework of the sequential decision problem has

remained in essentially the same form as originally formulated by Wald

[1947]. This formulation involved a sequential decision concerning the

choice of obtaining another sample or making a final decision.

In this paper we generalize this problem to include making de-

cisions on the state of a non-stationary stochastic process and are able

to obtain a convenient solution for the case in which the state of the

process is independent of the decisions made.

Such a formulation is of interest in problems involving estimation

or signal detection as used in the tracking of missiles or commercial aircraft.

In these problems, the decisions usually do not influence the original

prcess. Another area in which LLiz fEcrmulation is appropriate would be

problems involving economic decisions where the processes under ob-

servation, such as stock prices or government indices, are relatively

independent of decisions made on a personal or corporate level.

II. Sequential Decisions for Stochastic Processes

We will let T be a linearly ordered parameter set, and will assume

that z(t), t E T is a stochastic process defined on a probability

space (®8,,?7). We will also let y(t), t E T be a stochastic process defined

on a family of probability spaces (Q,B,Pe): e E 6 .

The set of admissible actions will be given as a measurable space

(7,A). An action process, a(t), t E T, will be defined, on 67; such a process

is similar to a stochastic process without the probability measure, that is,

a: 7- RT

A measurable loss function L: 9 x 67 - R will be defined as will a set,

D, of measurable decision functions, where d E D and d: Q -67.
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The function d will be required to operate 
on 0 only as a causal function

of y(t), t E T; that is, for any - E T

a(r) = d(y(t), t 5 T)

The Bayesian decision problem consists 
then in finding a d* E D such that

the risk function r(d) = E[L(G,d(w))] is minimized

(1) r(d*) = min L(9,d(w))dP (w)d7?( )

d E D (9 Q

The complexity of the above minimization problem 
is determined by the

nature of the probability spaces 0 and 
C2, the loss function L, and the

decision set D. The loss function L will be defined on 
8 through the

process z(t), t E T, so that L(e,d(w)) 
= L(z(t), t E T; d(y(t),t E T)).

If z(t), t E T, is a function of d(y(t), t E T) then 
the minimization in

(1) is a problem usually studied in stochastic optimal control theory, see

f~r e~xapo -rushner [19671 . In the particular case wiiei. L(T + A) is a function

only of z(T) and a(T) the problem 
is usually referred to as a Markov 

decision

problem.

Although in the study of stochastic control 
theory and Markov decision

processes it is possible to obtain necessary conditions 
for the optimal de-

cision rule in some cases, these conditions 
often do not lead to a practical

explicit solution. In the next section we will make several 
assumptions that

will lead to a simple explicit solution 
to (1). These assumptions will

usually be true in the case where the problem involves decisions 
concerning

the state of the z(t), t E T process, rather 
than the control of this process.

In Wald's original formulation the process z(t), 
t E T is a constant z(t) =

al, or a2 for all t E T, and the loss function 
is a constant until a decision

is made, representing the cost of observations, 
and zero after the decision

has been made. Although Wald did not adopt the Bayesian context, 
his results
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would be unaltered if equal a priori probabilities were assumed. In the

following section we will derive an interesting analog to Wald's results.

III. Non-Controlled Processes and Independent Action Processes

In this section we will assume that z(t), t E T is not a function

of a(t), t E T and will consider the following form of the loss function

(2) L(e,a) = J L(z(t), a(t)) dt

where L(z(t),a(t)) > 0 V t E T

= L(z(t), d(y(T), T t))dt

The notation f(z(t)) will imply that f(.) may be a function of t as well as

the value of z at t; that is, f(z(t)) = f(z(t),t). Assuming that the following

integrals exist, the risk function, (1), becomes, with some abuse of

notation,

r(d) = i L(z(t), d(y(T), T : t)) dt dP (w)d7?(G)

= e L(z(t),d(y(r),T 5 t)) dM(ew)dP(w)dt

Sr R L(z(t),d(y(T),T r t))d(z(t)ly(T),T < t)dP(y(T),T 5 t)dt
T Rt R

We will let C7(t) represent the set of admissible actions,

at time t, and we will make the assumption that c7(t) is independent of a(T),

t # T for any t, T E T. That is, the set of admissible actions at any given

time does not depend on an action taken at any other time. Such processes

a(t), t E T, we will call independent action processes

If we let

(3) 1(,y,t) = L(z(t),d(y(T), T t) = a)d?(z(t)ly( ),. T t), acE a(t)
R
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then the above risk function becomes

(4) r(d) ;= (,y:,t)dP(y(T),T : t)dt
T R

Theorem

If:a(t), t E T is an independent action process; z(t), t E T does

not depend on a(t), t E T; and the loss function is of the form given in (2),

then the risk (1) is minimized by the following decision rule:

d(y(T), T ! t) = ct* a* E 7(t)

iff

(5) (a*,y,t) ; ?(a,y,t) Va E c7(t)

Proof

Since L(z(t), d(y(T), T ! t) > 0 Vt E T, from (3) we have

Z(cx,y,t) 2 0 for all a E c(t), t E T, and all y(T), T r t. Thus (4) will

be minimized by choosing the a E 7(t) that minimizes £(a,y,t) for each t E T

and cauh y(i,), 5 t. Given (4),-chis iast statement,may be proved simply

by contradiction. 0

We will also define

(6) Q(a,y,t) = L(zt),d(y(T),T < t)P(y(T),T 2 tlz(t))d(z(t))
R

then

Corollary

Given the assumptions of the above theorem, the risk (1) is

minimized by the decision rule

d(y(T), T 5 t) = a * 6 E(t)

iff

(7) Q(Vayt) f Q(c,y,t) VaE at
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Proof

From (3) and (6) Q(a,y,t) =£(aO,y,t)P(y(T), r 5 t)

and therefore

Q(ad*,y,t) 5 Q(a,y,t)

iff ?(o*,y,t) L (c,y,t)

a) Estimation Given a Quadratic Loss Function

If

L(z(t),d(y(T), T t))

= (z(t) - d(y(T),T t)) 2

then the optimal decision rule as determined from (3) and (5) is

(8) d(y(T), T t) = E[z(t)j y(T),T 5 t].

This result is given in Doob [19531.

The conditions required of y(t) and z(t), t E T by the Kalman

filter, Kman 1960], ar precisely thozz such that (8) can b-computed rccursively

in time.

b) Finite State and Action Spaces

Suppose

z(t) E ~ji: i = 1, ... , n) V t E T

and a(t) E (Bi: i = 1, ... , m) V t E T

and that the observation process y(t), t E T is some process related to

z(t), t E T, as depicted in Figure 1.
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z (t)

T

y(t)

I

a(t)

Figure 1: Sample realizations of z(t), y(t), a(t), t E T
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a(t) is a function of y(T), T 5 t, and we will define

L(z(t) = ai,d(y(T), T 5 t) = ) = L.(t) > 0.

In a practical situation we might be trying to determine the state of z(t)

from noisy data, and the loss would be minimized if a(t) = z(t), t E T.

The above Theorem gives the following optimal decision rule.

a(t) =  j

n n
iff Li..(t) ?(z(t) = a.i y(T),T t) L..(t) (z(t) = .iY(T), T t)

i=1i=l

j = 1,..., m.

(i) Likelihood Ratio Test

It is well known that for simple binary random variables and fixed

sample size, both the optimal Bayes test and the Neyman-Pearson test result

in comparing the likelihood ratio with a simple threshold. If z(t) E (ala21,

and a(t) E 1 ,a2 V t E T and assuming that Lii (t) L. ij(t), i = 1,2,

th^- frc- (7) the optimal decisinr rulk is shown-to be

aP(y(8), < tiz(t) = l) [L 2 1 (t) - L2 2 (t)T]?(z(t) = a2 )
a(t) =  (y(), tz(t) = a2 ) [L 1 2 (t) - L1 1 (t)](z(t) = 1)

a(t) = a2  otherwise.

Thus if z(t) is constant in time, and the loss function is independent

of time, the above decision rule reduces to the familiar likelihood ratio

test. On the other hand, the result shows that for a stochastic process

the optimal decision rule consists of a time varying likelihood ratio

test.

(ii) Analog to Wald's Original Formulation

In Wald's original formulation, he considered processes which were

in one of two states for all t E T; that is, the process was a simple
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binary random variable. This will be a special case of the following, in

which we will assume that the process may be in either of two states at any

time t E T.

z(t) E fa1,' 2 V t T

We will let our action space be such that

a(t) E al',a2 ,a 33 V t E T

where:

a(t) = a 1 corresponds to the decision that z(t) = al;

a(t) = o2 corresponds to the decision that z(t) = a2;

and, a(t) = a3 corresponds to the action of making no decision at this time,

other than to wait until we have obtained another observation. We will

specify a loss function that requires us to pay for this additional informa-

tion and waiting time. We will let

Ll(t) < Ll3(t) < Ll(t) Vt Fr T

and L2 2 (t) < L2 3 (t) < L2 1 (t) V t E T.

That is, the loss incurred for making a correct decision is less than the

loss for making no decision, which is less than the loss for making the

wrong decision. For simplicity we will normalize the losses such that

Ll 1 (t) = L2 2 (t) = 0.

If we assume that P(z(t) = al) = P(z(t) = a2 ) V t E T then the decision

rule determined by (7) consists of computing the likelihood ratio

(y(T)' , T < t z(t) = a)
(9) A(y,t) = ( (y(T), T 5 tlz(t) = ad2)

and setting

a(t) = al if A(y,t) > L2 1 (t) - L2 3 (t)

L (t)'13
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a(t) = c2 if A(y,t) < L2 3 (t)
L1 2 (t) - L1 3 (t)

a(t) = a3 otherwise.

If the loss function is time independent, then the similarity

of this to Wald's result of constant thresholds is striking. In particular

if we let L12 = L21 and L23 = Probability of a Type I error.

L21

L 1 3-- = Probability of a Type II error.
21

then these are exactly the Wald thresholds.

If we wish, however, we can make L13 (t) and L2 3 (t), increasing

functions of time, which correspond to making the loss incurred by in-

decision greater the longer a decision is delayed. This

would LiirL Oie above t1ireshol_ clusem Logether as showu in Figure 2,

although we note that the inequality

L 12 (t) > L1 3 (t) + L2 3 (t) V t E T

must be satisfied.

This inequality is a statement of the fact that if the total cost of

indecision is greater than the cost of a wrong decision, then a decision should

always be made.

Q(y,t)
Region 1

a(t) = al

L21 L23
constant threshold =

13

'\ time dependent
\ threshold = L2 1 (t) - L2 3 (t)

Region 3 L(t)
a(t) = 3  L13(t)

Region 2 L23
a(t) = L2 L12-L13
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A major difference between this test and Wald's test is, that

the test continues for a fixed time interval, T. Once a threshold is

crossed, the test does not stop, rather the action is constant until the

same threshold is recrossed in the opposite direction.

IV. Conclusion

This paper has considered the problem of making decisions on

the state of a stochastic process. A solution to the problem has been

derived from the case in which the state of the process is independent

of the decisions made, the set of admissible actions at any time is in-

dependent of the action taken at any other time, and the loss function

is of the form given in (2). These assumptions are usually made im-

plicitly in the derivation of the conditional expectation as the solution

to the minimum variance estimator,.and this solution is shown to

foilow from the decision rule derived in this paper. The above assumptions

are also true in the formulation of the standard Bayesian likelihood ratio

test, and the Neyman-Pearson test, and this paper therefore, is a generation

of these tests.

In the Wald test, the assumption of the set of admissible actions

being independent of actions taken at any other time, is not true, since

once a threshold is crossed no more observations may be taken. Often,

however, one would like to formulate a statistical test, in a sequential

manner, and continue to accept observation after one hypothesis has tentatively

been accepted. This would be particularly true if the hypothesis that was

true, could change over time. The solution to such a formulation is given

in this paper.
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